110 research outputs found

    Cold collisions of C2−_{2}^{-} anions with Li and Rb atoms in hybrid traps

    Full text link
    We present a theoretical investigation of reactive and non-reactive collisions of Li and Rb atoms with C2−_{2}^{-} molecular anions at low temperatures in the context of sympathetic cooling in hybrid trap experiments. Based on recently reported accurate potential energy surfaces for the singlet and triplet states of the Li-C2−_{2}^{-} and Rb-C2−_{2}^{-} systems, we show that the associative electronic detachment reaction is slow if the colliding partners are in their ground state, but fast if they are excited. The results are expected to be representative of the alkali-metal series. We also investigate rotationally inelastic collisions in order to explore the cooling of the translational and rotational degrees of freedom of C2−_2^- in hybrid ion-atom traps. The effect of micromotion is taken into account by considering Tsallis distributions of collision energies. We show that the translational cooling occurs much more rapidly than rotational cooling and that the presence of excited atoms leads to losses of anions on a timescale comparable to that of rotational cooling.Comment: ICPEAC 2019 conferenc

    Charge Exchange in Low-Energy H, D + C4+ Collisions with Full Account of Electron Translation

    Get PDF
    We report the application of the quantum approach, which takes full account of electron translation at low collisional energies, to the charge exchange process H, D + C4+ → H+, D+ + C3+(3s; 3p; 3d). The partial and the total integral cross sections of the process are calculated in the energy range from 1 till 60 eV/amu. It is shown that the present results are independent from the upper integration limit for numerical solution of the coupled channel equations although nonadiabatic couplings remain nonzero up to infinity. The calculated partial and total cross sections are in agreement with the previous low-energy calculations and the available experimental data. It is shown that for low collisional energies the isotopic effect takes place. The observed effect is explained in terms of the nonadiabatic dynamics.National Science FoundationVolkswagenstiftungFonds National de la Recherche Scientifique de Belgiqu

    Ab initio calculation of the 66 low lying electronic states of HeH+^+: adiabatic and diabatic representations

    Full text link
    We present an ab initio study of the HeH+^+ molecule. Using the quantum chemistry package MOLPRO and a large adapted basis set, we have calculated the adiabatic potential energy curves of the first 20 1Σ+^1 \Sigma^+, 19 3Σ+^3\Sigma^+, 12 1Π^1\Pi, 9 3Π^3\Pi, 4 1Δ^1\Delta and 2 3Δ^3\Delta electronic states of the ion in CASSCF and CI approaches. The results are compared with previous works. The radial and rotational non-adiabatic coupling matrix elements as well as the dipole moments are also calculated. The asymptotic behaviour of the potential energy curves and of the various couplings between the states is also studied. Using the radial couplings, the diabatic representation is defined and we present an example of our diabatization procedure on the 1Σ+^1\Sigma^+ states.Comment: v2. Minor text changes. 28 pages, 18 figures. accepted in J. Phys.

    Noise estimation in cardiac x-ray imaging: a machine vision approach

    Get PDF
    YesWe propose a method to automatically parameterize noise in cardiac x-ray image sequences. The aim was to provide context-sensitive imaging information for use in regulating dose control feedback systems that relates to the experience of human observers. The algorithm locates and measures noise contained in areas of approximately equal signal level. A single noise metric is derived from the dominant noise components based on their magnitude and spatial location in relation to clinically relevant structures. The output of the algorithm was compared to noise and clinical acceptability ratings from 28 observers viewing 40 different cardiac x-ray imaging sequences. Results show good agreement and that the algorithm has the potential to augment existing control strategies to deliver x-ray dose to the patient on an individual basis.This work has been performed in the project PANORAMA, funded by grants 335 from Belgium, Italy, France, the Netherlands, United Kingdom, and the ENIAC Joint Undertaking

    Deficits of psychomotor and mnesic functions across aging in mouse lemur primates.

    Get PDF
    Owing to a similar cerebral neuro-anatomy, non-human primates are viewed as the most valid models for understanding cognitive deficits. This study evaluated psychomotor and mnesic functions of 41 young to old mouse lemurs (Microcebus murinus). Psychomotor capacities and anxiety-related behaviors decreased abruptly from middle to late adulthood. However, mnesic functions were not affected in the same way with increasing age. While results of the spontaneous alternation task point to a progressive and widespread age-related decline of spatial working memory, both spatial reference and novel object recognition (NOR) memory tasks did not reveal any tendency due to large inter-individual variability in the middle-aged and old animals. Indeed, some of the aged animals performed as well as younger ones, whereas some others had bad performances in the Barnes maze and in the object recognition test. Hierarchical cluster analysis revealed that declarative-like memory was strongly impaired only in 7 out of 25 middle-aged/old animals. These results suggest that this analysis allows to distinguish elder populations of good and bad performers in this non-human primate model and to closely compare this to human aging.journal article20142015 01 09importe
    • …
    corecore